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Abstract-The influence of cavitation on the transient stress field near the tip of a Mode I plane
strain stationary crack. is examined using a phenomenological constitutive model proposed by
Hutchinson for the steady state creep of polycrystalline materials under creep constrained grain
cavitation. The time history of the amplitude of the singular stress field near the crack. tip is computed
for the special case of a pl<lOe strain edge crack under a suddenly applied constant load. The effect
of non-uniform distribution of cavitating fat.'Cts t>n the near tip stress Held is analyzed by assuming
that the density of a cuvitating facet is pit.'Cewise constant.

INTRODUCTION

At an elevated temperature crack growth in a polycrystalline metal often occurs by the
growth and coalescence of grain boundary voids. Void growth can occur by means of the
following mechanisms: (I) the diffusive transport of atoms along the grain boundary[ I],
(2) the creep deformation of the grains by power law creep[2J. (3) coupled diffusion and
power law creep[3]. In generul. void growth is determined by the coupling of the mechanism
of coupled diffusion and power law creep. However, under the conditions of sutliciently
low stresses, power law creep becomes Icss important as far as the kinetics of void growth
is concerned, i.e. locally a void grows by the process of diffusion. The local dominance
of the diffusive mechanism, however, docs not necessarily imply that the actual void growth
rate can be calculated on the basis of dilfusion alone. As Dyson !irst pointed out[4], growth
of voids on relatively isolated grain boundary facets under the condition of low applied
stresses is necessarily dependent on the surrounding grains which have to deform con­
tinuously by creep to accommodate the matter diffusing away from the growing voids.
Thus. the stress, on a grain boundary facet, which equals the applied macroscopic stress at
the instant of loading (assuming the instantaneous response of the material is elastic) will
relax with time. This means that the stress acting on the cllvitating grain boundary may be
very different from the mllcroscopically applied stress. Rice[5] quantified Dyson's concept
by showing thllt. in a material where cavitated grain boundaries are relatively isolated from
each other. the overall void growth rate is determined in the low stress limit by power law
creep. Riedel[6] generalized the result of Rice to multiaxial states of stress. Riedel also
computed the time I r for the stress carried by the cavitating facets to be completely relaxed.
For time larger than I r , cavitating grain facets can be considered to behave effectively as
traction-free microcracks.

Based on Dyson's concept described above, Hutchinson proposed a phenomenological
constitutive model for the steady creep of polycrystalline material undergoing creep con­
strained grain boundary cavitation[7]. The grain boundary facets in this model are assumed
to be traction-free penny-shaped cracks and are embedded in a power law creeping material.
It is assumed that only facets which arc aligned normal to the maximum principal tensile
stress direction can cavitate and that the spacing between the cavitating facets is sufficiently
large so that their interaction can be neglected. With these assumptions. Hutchinson derived
the potential function for this material. He also showed that the stress singularity ahead of
a stationary crack tip in the material is still given by that of the HRR field. By assuming
that the density of the cavitating facets is uniform ncar the crack tip and that transient or
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elastic deformation can be ignored, Hutchinson showed that the strength of the HRR
singularity is determined by the well-known path integral C[7].

Tvergaard[8.9] has extended Hutchinson's constitutive model to account for non-zero
traction on the micro-crack faces and for the grain boundary sliding. He also completed a
numerical study of creep crack growth based on his model(I 0]. In this work, we will focus
on Hutchinson's model and its effect on the transient near tip stress distribution of a
stationary crack.

The influence of cavitation on the transient stress fields near the tip of a stationary
crack is studied by including the instantaneous elastic deformation in Hutchinson's con­
stitutive model. Thus. at the instant of loading. the crack tip field is governed by the elastic
K field. For sufficiently short times. the creep zone is small compared with the region of
validity of the K field. the small scale creep (S.S.e.) problem is therefore well posed. The
transient stress field near the crack tip under S.S.e. conditions will still be governed by K.
We will begin this work by analyzing this s.s.e. problem. For short times, an approximate
formula can be obtained for the transient stress near the crack tip. Assuming that the
loading remains constant, the S.S.e. condition will eventually be violated and extensive
creep occurs everywhere. The time of transition from S.S.e. to extensive creep is estimated.
The transition from S.s.e. to steady state is also examined by means of a finite element
study of an edge crack under plane strain and constant Mode I loading conditions. The
finite element calculations arc performed assuming that p. a parameter which measures the
density of cavitating facets. is spatially uniform. Comparisons arc made with the short-time
solution. the approximation for the transient amplitude of the singular field and the esti­
mated transition time for different values of p.

In general. the density of the cavitating facets is not spatially uniform and is most
probably a decre~lsing function of the distance away from the crack tip. Under this condition.
the proof of the path independence of the C integral oreaks down even if the "steady state"
condition of extcnsive crccp occurs everywhcrc. It may. howevcr. still oc possiole that the
"t;lr field" valuc of the line integral may not he too different from its ncar tip value. This
question is investigated in this work oy repcating our /inite clement calculations with a
piecewisc constant p. Specifically, we assume that p = constant in a circular region engulfing
the crack tip and that p = 0 outside this cire/c. The radius dol' this circular region is assumcd
to he of ordcr rK. where rK denotes the extent of the region of asymptotic validity of the
elastic K field if the spccimen is linearly clastic. It is probably unlikely that this distribution
of cavitating facets occurs. our choice is based on the following rationale.

(I) The distribution of the cavitating I;lcets cannot bc known in advance and is
inherently an unknown of the problem. Wc therefore pick a distribution that is simple to
impkment in the numerical scheme.

(2) It is easy to interpret the results since the C integral is path independent both
outside and inside the eire/c. The qucstion reduces. therefore. to the magnitude of the jump
of the value of this integral across the boundary of the circle.

FORMULATION OF GOVERNING EQUATIONS

A small strain and displacement thcory is used in which the strain displacement
equations and the equilibrium equations arc linear. We usc a coordinate system (x. y,:)
with the :-axis lying along the crack front together with a cylindrical coordinate system
(r. O. :). The origins of both coordinate systems are attached to the crack tip. In this work
attention is directed to the case of plane strain Mode I loading.

We assume that the total strain rate tensor'; consists of two parts, i.e.

(1)

wherc i.~1 and i.~1 denote the Cartesian components of the elastic and creep strain ratc tensor,
respectively. The elastic strain rate is related to the stress rate through the isotropic Hooke's
law. In Cartesian coordinates. they arc
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(2)

where v is Poisson's ratio and E is Young's modulus. The creep strain rate is related to the
stresses by[7]

(3)

where 5,/ is the component of the stress deviator in Cartesian coordinates. S the maximum
principal stress, (Te the equivalent stress and It. == 3(,,-1),2(,,+ I). m is the tensor the
components of which in the principal axes of stress are

m" ::::: i5;Ki5/ K (no sum on K) (4)

where D;j is the Kronecker delta and K denotes the index associated with the direction
aligned with the maximum principal tensile stress S. The factor p in eqn (3) is related to
the density of the cavitating facets N by

p::::: 4h'N(,,+ I) (I +3/,,)-12 (5)

where h is the radius of the cavitating facets. We shall assume p to be a function of position
only. When I' ::::: O. cqn (3) reduces to the well-known power law creep model with" being
the creep exponent and fJ a temperature-dependent material parameter. Note that the
existence of cavitating facets contributes an additional distortional component to the creep
strain rate. In particular. for non-vanishing p. the dilational creep strain rate is generally
nonzero.

The material description. eqns (I) (3). is supplemented by the equilibrium equations
which arc linear and is satisfied identically by the introduction of the Airy stress function
(P. i.e.

(6)

with respect to the Cartesian coordinate system (x• .1'). The governing partial ditl"crential
equation can then be derived hy inserting Ct.!'l (6) into eqns (I )-(3) and thcn inserting the
resulting strain rate tensor into the compatibility equation for plane strain.

ASYMPTOTIC STRESS FIELD

The transient asymptotic stn.:ss field ncar the tip of a stationary crack follows quite
easily from the an.l1ysis of Riedel and Rice[1I). From asymptotic dominance, it can be
shown that for" > I. the elastic terms in the governing equations can be neglected if the
crack is stationary and the stress field ncar the crack tip is given by H R R field, i.e.

(7)

where G,,(O, p) arc dimensionless functions describing the angular variation of the near tip
stress field. The numerical analysis of Hutchinson(7) showed that these functions arc weakly
dependent on p. I::::: 1(", p) is a numerical constant dependent on " and p. The numerical
results of Ref. (7) showed that 1(". p) is related to I ::::: 1(11,0) approximately by

(8)

Values of 10 • II for different values of 11 can he found in Ref. (7). We note that the existence
of the asymptotic field (7) does not depend on the assumption that p is uniform. Indeed.
eqn (7) is valid as long as p is bounded at , ::::: O. If p is nonuniform. then p in eqn (7) must
be interpreted as the value of p at the crack tip. From eqn (3). the creep strain and the strain
rate must necessarily have an ,.'H II singularity at,::::: O. The time-dependelll amplitude A(t)



304 V. BASTH1A and C. Y. Hu

cannot be determined by asymptotic analysis and is dependent on the loading history.
Under conditions for which there exists a unique stress-strain rate relation (e.g. extensive
creep conditions where the elastic strain rate is insignificant compared to the steady state
creep rate given by eqn (3) everywhere). A(/) is dependent on the external loading. the
geometry of the body and n. Furthermore. if p is constant in a region n enclosing the crack
tip. A(t) is given by the path integral C which is independent of path for all contours r in
n encircling the crack tip. In general. the C integral is path dependent and is defined by

(9)

In eqn (9). n denotes the outward normal to r. Ii, == II,., is the displacement rate at a material
point. [n regions where the creep strains are much greater than the elastic strains. a,A, =
Ba;+ 1(I + p(Sjae ) ~). Note that the conditions: (I) existence of unique stress-strain rate
relation. (2) p = constant (material homogeneous) both must be satisfied for the C integral
to be path independent. The second condition can be relaxed if the material is homogeneous
in the x-direction (i.e. p = p(y». It is. however. unlikely that p = 1'(.1') in metals except
under very special circumstances (e.g. composite materials).

SMALL SCALE CREEPING

The presence of the elastic term in eqn (I) allows for the instantaneous response of the
material subjected to a sudden applied load. As the accumulation of creep strain cannot he
instantaneous. at the instant of loading. the stress field in the material hody must he
determined by the elastic term in eqn (I) alone. The crack tip field at 1 = 0 must therefore
be the elastic K field. For sulliciently small times. with the exception of a region the size of
which is very small compared with the region of dominance of the K field. the accumulated
creep strain is small compared with the elastic strain and the ncar tip deformation field
must necessarily still he governed by K!. This will be referred to as the small scale creeping
(S.S.e.) condition. In the S.S.e. problem. the region of dominance of the K lleld is mathe­
matically taken as inllnite as it is large compared with the creep zone. which will be defined
as the boundary where the e:quivalcnt clastic strain and the equivalent creep strain are equal.
Within the creep zone one expects the stresses to relax with time (except for II = I).
Assuming that the external loading does not deaease with time the creep zone will grow
sulliciently large as time increases so that the S.s.e. condition can no longer he satisfied in
a finite specimen. Thus. the solution to the S.S.e. problem is asymptotic and is a short­
time solution.

We: will now consider the S.S.e. problem of a material obeying a constitutive model
of the form of eqns (I )-(3) under a suddenly applied load which is held constant thereafter.
We will also assume that I' is constant everywhere in the S.s.e. problem. That is. p is
constant inside the region of dominance of the K field. In a specimcn thc size of which is
large compared with the crack length a. the region of K dominance is of the ordcr of a.la.
The initial condition for the S.S.e. problem is

(10)

as 1 -+ O. The /,,'s are universal functions descrihing the angular variation of the stresses.
The boundary conditions arc the usual traction free houndary conditions on the crack faces.
Following Riedel and Rice[II]. the stress for this problem must have the self-similar form

(T'l = (EBI) 1.(. 1iF,,(R.V.II. I'.p)

where R is a dimensionless radial distance given by

(II a)
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(II b)

For t > 0 and r - O. the stress near the crack tip is given by eqn (7) and is the HRR field.
Therefore. F must behave as[ll]

(12)

when R - O. where P. is a numerical constant dependent on n. p and v. The amplitude A(t)
of the near tip stress field is given by combining eqns (7) and (12)

(13)

Equation (13) implies that. within the region of asymptotic validity of these fields. the
stresses relax as r L(n+ I). Since r.~/M, - 0 (no sum on i andj) as r - O. the asymptotic strain
rate field at the crack tip is given by

(l4a)

where the asymptotic stress field. eqns (7) and (3). must be used to evaluate i~,. From eqns
(14a) and (7). the asymptotic strain Held is

fo
"

"" r.~, = (n + I )/1;~r (14b)

Equations (14a) and (14b) are approximately valid as long as r is in the region of
asymptotic validity of the H R R field. Equations (7) and (14a) point out that there is a total
relationship between the stress and strain rate Held. An equivalent way of saying this is that
the material near the crack tip can be replaced by a cavitated material undergoing steady
state creep. This. together with our assumption of p = constant. implies that the C integral
is path independent near the crack tip for each instant in time and that ...1(/) must be
approximately equal to C(t) cvaluated in this region. Note that

A(t) = CU) (15)

at the crack tip as long as p is bounded at the crack tip.
As in Riedel and Ricc[ II]. the creep zone boundary Rc(/) can be estimated by calculating

the equivalent strains r.: and r.; using the asymptotic stress fields. eqns (10) and (7). and
then setting them cqual to cach other. Thc result is

( 16)

where F< is a dimensionless function describing the angular variation of the creep zone
boundary and is dependent on n. p and v. The crcep zone size increases with time pro­
portional to tfll.~ III under S.S.c.

The exact value of fl. or C(t) can only be determined by the complete solution of the
S.S.c. problem or by finding the short time near the tip stress field of any plane strain
specimen under Modc I loading under S.S.c. conditions. The solution of the lattcr problem
will be presented in the next section. We now use a method used by Riedel and Rice[11] to
estimate {In. Riedel and Rice proposed to estimate Pn by assuming that the J integral is
approximately path independent everywhere. This assumption may be justified by the fol­
lowing observations. (I) J is approximately path independent insidc the region ofasymptotic
validity of the HRR field. since in this region there is an approximate total relation between
strain and stress; (2) J is path independent at distances large compared with the creep zone
since the material there is linearly elastic (S.S.c.).

Near the crack tip CU) can be obtained by using the relation C = J/(n + 1)1 in the
crack tip region which can be derived using eqns (7). (14) and the definition of J and C. At
the crack tip. therefore
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A(t) = C(I) = JlIp/(n + 1)1 ( (7)

where Jup is the value of the J integral evaluated at r = O. The assumption of path inde­
pendence of J implies that

( 18)

Using eqn (13). {J" is estimated to be

( 19)

Equation (19) reduces to the result of Riedel and Rice in the special case of p = O. It should
be noted that {J" in this work is related to ~" in the work of Riedel and Rice by the relation
{J" = ~"[lI/(n + 1)~rr]1 (" ~ Ii. For the special case of p = O. Ehlers and Riedel[15] have shown
that {J" given by eqn (19) differs from their numerical results by no more than 4%.

The chamcteristic time IT for the transition from S.S.c. to extensive creep of the whole
specimen can be estimated if one further assumes that p = constant in the whole specimen
and not just in the region of validity of the K field. In this case the final steady state value
of C(O = C'" integral is path independent. Following Riedel and Rice[II]. IT is estimated
by equating the short-time limit of C(O given by eqn (13) and the long time steady state
limit. II is found to be

II = ll{~' I K/!(EC"')

which is identical to the result of Riedel and Rice with I" in their work replaced by I.

(20)

NUMERICAl. RESUI.TS FOR TilE CASE JI = CONSTANT

The finite element method is used to obtain the time-dependent stress field of a plane
strain edge crack of length iI under tensile loading conditions. The edge crack configuration
is shown in Fig. I. To simulate an edge \:rack of length iI in an clastic half space. the square
boundary where loading is applied is taken to be of 31 a and is centered at the crack tip at
the origin. Initially. the stress and strain field of the body is taken to be zero. At time 1= O.
a tensile load of a. , = a" is applied to the remote boundary and thereafter held constant.
Traction free boundary conditions arc prescribed on the crack f~lces -{/ < x < O. Y = 0
and the surf~lce x = -il. As the craek is loaded in Mode ( we need only to consider the
domain y > O. with boundary conditions on the positive x-axis given by ""1' = a <V = O. The
configuration and loading conditions we adopted in this work are similar to the work of
Bassani and McClintock[ 12]. who considered the special case of Ii = 0 (an elastic power
law creeping material). The results of the finite element analysis arc presented in this section.
Details of our numerical procedure arc given in the Appendix.

The time scale lIsed in this numerical study is obtained by finding the time I" for the
creep strain to equal the elastic strain under a uniaxial tensile stress a". I,. is found to be

(21 )

where c~(p = 0) == Ba~. Since I" == a"/Ec~(p = 0) is independent of p. I,. is a monotonic
decreasing funetion of p.

At time / = 0 the response of the material is clastic. The stress intensity factor evaluated
at time / = 0 by our finite clement calculation is accurate to within I% of the exact analyti­
cal result of K1 = 1.12tT"(rra) I,~. To assess the accuracy of our program, we considered the
special case of p = 0 (no cavitation) first. Thc numerical result for the case of n = 3 and
Ii = O. was obtained by Bassani and McClintock[12]. Graphed in the same scale as their
publication. the differcnce bctwecn our numerical rcsults and theirs is less than a pen width.
A further chcck on our numerical scheme is to compare the steady state value of C = C'"
with the bounds established by He and Hutchinson[ 13]. They have established very accurate
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Fig. I. Finitc c1cmcnt mcsh used to computc thc timc-dcpendcnt deformation lield of a planc strain
edge cr'lck of length a loaded in Mode I. The sides CD. DE. EF and FC arc of equal length L = 31u.

A magnilied view or the mesh in the crack tip rcgion is also shown in thc figure.
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upper and lower bounds for J for the case of a plane strain Mode I edge crack in a power
law hardening material. Their J values can be easily converted to C· for a power law
creeping material (p = 0). For 1/ = 3, the upper and lowc:r bounds for C· are 3.54 and 3.70,
respectively[I3), whc:reas our numerical result gives C· = 3.95. For the case of n = 5, a
very large number of time steps arc required for C(t) to converge to the steady state value
of C·. The steady state value of C(t) is not shown in Fig. 3.

Figures 2 and 3 show the normalized time history of the normalized C(t) for the case
of II = 3 and 5, respectively. The values of p = 0, 0.5 and 1.0 were used for each value of
II. The details of the evaluation of C(t) arc given in the Appendix. The values of C(t)
presented below are the ones calculated over the circular path nearest to the crack tip
(r = 0.002(/). At very short time, before the creep zone has had time to grow appreciably,
the value of C(t) calculated over ditTerent paths in our mesh ditTers considerably. However,
as the creep zone grows, more and more of the paths close to the crack tip lie completely
within the creep zone and C(t) evaluated over these paths becomes path independent.

Figures 2 and 3 show that, with respect to the normalized time

T == tlt"

the normalized values of C(T.p) for ditTerent values of p collapse into one single curve.
Thus, our numerical results show that

C(T,p)/I- C(T,O)/Io· (22)

Since the amplitude of the near tip stress field depends on C/ I (8 is independent of p), eqn
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(22) anu Figs 2 and 3 imply that the nC'lr tip stresses arc monotonic dc:creasing functions
of p for c<1ch fixed r and I. This is expected as the c~lvit"llion increase the amount 01
creep straining and hence stress rchl:lr.ution increases as p increases. A consequence of thi~

numerical result is that for non-zero p the tnmsition time t·t from 5.S.C. to extensive creer
is given by

(23

by eqn (21). Equation (22) shows that the steady state value of C* is given approximate!:
by
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C*(p) '" ([(n. p)!lo)C*(p = 0).
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(24)

Therefore. the steady state value of C == C* is a monotonic increasing function of p for fixed
values of n. Since the strengths of the near tip stresses under steady state creeping conditions
depends only on C*J. eqn (24) implies that for a plane strain edge crack in an infinitely
extended body undergoing extensive creep. the strength of the near tip fields are independent
of p as long as p is spatial1y uniform.

Since the normalized C vs T curves are independent of p. fJ.(p) can be related to
P.(p = 0) by eqns (13) and (15). P. is found to be

fJ.(p) = [I +p]-llo+ (lfl.(p = 0). (25)

Equation (25). which is a consequence of our numerical work. differs from fl. obtained
from assuming the path independence of J by a numerical factor of [( 1+ p)/ol I] (/(.+ D. It
provides a good approximation to fl. as fl.(p = 0) agrees with numerical results to within
4%.

Using fl. and C* given by eqns (25) and (24). respectively, we found. as expected, there
is an exact agreement.between the IT given by eqns (23) and (20).

Equations (13) and (15) predict that. for short times. C is inversely proportional to
time I. We have found that. log-log plots of C(t) vs normalized time curves have slopes
ranging from -0.9 to -1.1 for times less than IT for al1 cases.

Time sequences of the creep zone boundaries for P = O. 0.5 and 1.0 arc obtained from
our numerical results for the cases of" = 3 and 5. respectively. For short times (lIlT < I).
these zones propagate roughly with a self-similar shape. As expected, the extent of the creep
zone is a monotonic increasing function of p at any fixed instant in time. For Ill r > I, the
creep zones approach the boundary and lose their self-similar shape.

NUMERICAL RESULTS FOR A I'IECEWISE CONSTANT I'

We considered the same problem as in the previous section except that P is now taken
to be piecewise constant. Specilically. we assume that p = P'ip = constant in a circular region
engulfing the crack tip and that P = 0 outside this circle. The radius d of this circular region
is assumed to be of order 'I;. where'l; denotes the extent of the region of asymptotic validity
of the elastic K field if the specimen is linearly elastic. In the following calculations 'I; is
taken to be O.la. With this choice of d. II can be considered to be spatially uniform as far
as the S.S.c. problem is concerned. Indeed. II can be considered to be spatially uniform for
the S.S.c. problem as long as d> 'I;' We therefore expect the deformation fields for the
case of piecewise constant II to be approximately the same as that of the case of II = P'op
everywhere as long as the S.S.c. condition prevails. For time larger than I r • S.S.c. no
longer exists and the stresses would be different from that of the case where II is spatially
uniform. The case of 1/ = 3 is used in the numerical study below. Values of p used in this
study arc taken to be I' = 0.5 and 1.0 for, < d and p = 0 for, > d. respectively.

Of particular interest is whether the steady state value of the C(/) integral. C*. is
approximately path dependent. Our choice of p implies that C* is path independent in the
region inside and outside of the circle. The discontinuity of p causes some components of
the stress and strain tensor to be discontinuous across the circular boundary. We therefore
anticipated that C* is discontinuous across the boundary of the circle.

The time evolution of the normalized C( T) was studied for the two cases stated above.
As anticipated. for time smaller than the transition time given by eqn (20), the time history
of C/I for paths inside the creep zone for the case of piecewise constant I' are practically
identical to the case of uniform I' discussed in the previous section. For times larger than
the transition time IT. C(/. 1')1I-C·II for the two cases are different. The C·II associated
with the piecewise constant p is lower in value than the spatially uniform case of p = I in
the region, < d = 0.1 a. The normalized C· as a function of normalized radial distance rIa
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Fig. 4. Normalized stcady statc valuc of C(t.I') = C· as;\ fUllctioll of normalized distance rill from
lhc crack lip for thc casc of n = 3." = 0 anu 1.0. rcspeclively.

is shown in Fig. 4. The C· integrals evaluated on different paths inside the region r < O.la
differ from each other by less than 4'Yo. The average normalized value of C· in this region
is 7.0 as compared to 16.7 for the spatial uniform case of p = I.

As expected. the numerical results show that these long time C· integrals arc path
independent both inside and outside of the circle r = O.la. Figure 4 shows that. in the region
p = O. the steady state value of normalized C· is pral.:tically the sallle as the case of a
spatially uniform P (4.0~ vs 3.98). However. the dillcrence between the normalized values
of C· inside and outside r = O.la is signilieanl. The normalized value of C· outside the
circle is 4.02 which is almost 50% less than the inner C'" value of 7.0.

SUMMARY AND DISCUSSION

Our numerical results show that results for the case p = 0 can be easily generalized to
that of p#-O if we assumed that p is spatially constant. Note that. although p. the density
of cavitating facets is spatially uniform. the rate of cavitation and growth of voids is a
strong function of position. As in the case of p = O. the S.S.c. condition can be characterized
by the condition I,.(p) < I. Under S.S.c.. the ncar tip deformation field is controlled by the
elastic stress intensity K,. The amplitude of the HRR field under S.S.c. under a suddenly
applied constant load is determined by the numerical constant IJn(p) in eqn (13). Our finite
element analysis indicates that Pn(P) is related to fJn(P = 0) by the simple expression (25).
Furthermore, the transition time I r for non-zero p is lower than (,(p = 0) by a factor of
1/(1 +p). The ratio of the steady value of C«( -to (0) = C· for non-zero p to C·(p = 0) is
found numerically to be approximately given by 1/10 for each fixed II. A consequence of this
result is that the ncar tip steady state deformation fields for the case of the edge crack
geometry we considered are independent of p as long as p is spatially uniform. It is not
clear if this particular result is independent of specimen geometry. Further numerical studies
are needed to clarify this point. If this result were independent of specimen geometry, it
would imply that for a specimen undergoing extensive creep. the deformation fields near
the crack tip depends only on C"'/I and arc otherwise independent of p.

We have also carried out a numerical study of a case where p is not spatially uniform
and is piecewise constant. Our results show that, as long as the region of non-zero (but
constant) p is sufficiently large so that it engulfs the region of asymptotic validity of the K
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field at I = 0, the distribution of the deformation field does not differ significantly from the
case of uniform p everywhere in the specimen. This result is consistent with the S.S.c.
assumption. However, we do find that there is a significant difference between the steady
value of C :: C· inside the circular region where p = constant::;' 0 and outside the region
where p = O. However, the case of piecewise constant p is probably the case where the
discrepancy between the "inner"' C· value of the "outer" C· value is the largest. It could
still be possible, in situations where p varies continuously with distances away from the
crack tip, that the C· integral is approximately path independent.

There are obvious limitations associated with the constitutive model used in this study.
Hutchinson's phenomenological model is derived based on a dilute concentration of cavi­
tated grain facets so that interaction between the cavitated facets can be ignored. This is
highly unlikely near the crack tip region where stresses are high. Furthermore. it is not clear
how p should be determined in the crack tip region. In general, one would expect p to
evolve as a function of stress in the crack tip region. Equations governing the evolution of
p are as yet unavailable. The steady state creep law stated by eqn (3) was derived on the
basis that the stress carried by the cavitating facets is completely relaxed. Therefore, our
calculation is valid only when IT is sufficiently larger than If' Also, our analysis ignores the
effect ofgeometry changes (small strain theory and a mathematically sharp crack is assumed
in our calculations) and hence cannot be uniformly valid in the crack tip region. The region
near the crack tip where finite strain effects are important is about one or two crack opening
displacements. Our analysis is expected to be valid outside this region .
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APPENDIX: FINITE ELEMENT METHOD

In this work an incremental finite element scheme has been used. The scheme is equivalent to the more
common direct stiffness formulation. The only difference is that in the incremental formulation the increments of
nodal displacements arc treated as unknowns. The material nonlinearity is taken care of using the initial strain
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approach[ 14). In this approach the inelastic strains are converted into equivalent body forces. The resulting
equilibrium equation in incremental form is

[A1{.1U} = {.1FJa+ [.1F}" (AI)

where ~c: denotes the increments in the nodal displacements. {.1F:a the increment in the applied nodal forces
and : .1F;" the increment in the pseudo load due to increase in the non-elastic strain. With this approach a linear
finite element problem is obtained for each time step. The stiffness matri.' in this formulation is the elastic stiffness
matrix and is the same for all time steps. The solution of eqn (A I) gives the nodal displacement increments. From
this. the increments in strains and stresses are calculated. These incremental values are integrated using an el{plicit.
one-step Euler method. An automatic time step control scheme is used to balance the stability of the algorithm
and the economy of the simulation run. During any time step the increment in the non-elastic strain is limited to
a fraction "f" of the accumulated creep strain such that

The time step size is determined by keeping f in the range

0.05 < f < 0.1.

(A1l

(AJl

Formula (AJ) is used as a guideline and time step size is never more than doubled in two consecutive steps. Also.
after a maximum of three jumps in the time steps the calculations are re-stabilized using three constant length
time steps.

Eight noded quadrilateral clements are used in the computation. The crack tip elements are formed by
collapsing three nodes into one along one side. This element models a strain singularity of r-' provided that the
three collapsed nodes are allowed to displace independently. After the elastic solution is obtained in the first time
step. these collapsed m>des are released to model the r'''''' '" singularity of the near tip strain field. A reduced
(1 x :!) integration schcme is used to avoid the problem of m(>delling incompressible deformation for long times
or ncar the crack tip.

To eV;lluate the p'lIh integral C. circular paths around the cr.lCk tip are selected. To avoid the 'ldditional
calculation of stress and strains along any arbitrary path. these paths arc selected to pass through the Gauss point
locations of the elements. Twenty such paths (two in each of the ten radial layers of clements) arc selected. The
C line integral is evaluated using two point Gaussian quadrature over each of the eight line segments of the paths.


